投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

研究揭示有机太阳能电池中电荷传输新机制

来源:太阳能学报 【在线投稿】 栏目:综合新闻 时间:2021-05-08
作者:网站采编
关键词:
摘要:有机太阳能电池(OSCs)由于具有轻量化、柔性、可溶液法大面积制备等优点,成为光伏领域的重要研究方向,特别是2015年新型非富勒烯受体的出现,极大地推动了OSCs的发展。 近日,中

有机太阳能电池(OSCs)由于具有轻量化、柔性、可溶液法大面积制备等优点,成为光伏领域的重要研究方向,特别是2015年新型非富勒烯受体的出现,极大地推动了OSCs的发展。

近日,中科院青岛生物能源与过程研究所先进有机功能材料与器件研究组在前期非富勒烯受体的新型侧链工程研究基础上,进一步系统研究并深入揭示了烷基侧链的影响,实现了对分子堆积、捕光层形貌及电荷传输更为精细的调控。

记者了解到,在面向应用的大面积器件的印刷制备中,OSCs捕光层厚度是一个绕不开的课题。首先,随着膜厚的增加,捕光层内电荷的复合损失显著增加,电池效率迅速下降;其次,较薄膜厚的印刷制备会对设备和工艺的要求极为苛刻。然而根据目前已有的报道,绝大多数的高性能电池均是基于~100 nm的捕光层材料。

因此,发展新方法开发具有膜厚敏感低的有机光伏材料对于OSCs的印刷制备及应用具有重要意义。

先进有机功能材料与器件研究组研究发现,侧链烷基碳数细微调控对共轭材料分子堆积方式展现出截然不同的影响,在侧链碳数为5时的IDIC-C5Ph受体中存在奇特的分子堆积。

该研究组首次提出了双通道电荷传输(TCCT)概念,可实现电荷更为高效的传输与提取。

光伏性能结果表明,IDIC-C5Ph基器件最优条件下的填充因子(FF)可高达80.02%,是常规有机光伏器件中的最高值之一。考虑到TCCT特性在电荷传输及抑制复合方面的优势,IDIC-C5Ph基器件随着膜厚增加到307 nm时FF仍然高达75%,媲美大多数报道的低膜厚器件数据;进一步增加到470nm时,FF依然大于70%,PCE达到13%。

与之对比,常规单通道电荷传输的IDIC-C4Ph器件,最优膜厚105 nm时具有较高的FF(78.05%)和转换效率,但随着厚度增加FF明显降低(300 nm, FF=70.12%; 485 nm, FF=65%)。这些结果表明侧链诱导的TCCT特性赋予电池低的膜厚敏感性,对大面积电池印刷制备具有重要推动意义。

相关研究成果以《侧链精细调控构筑独特的分子双通道堆积实现超厚膜高效有机光伏》为题发表于《创新》。

文章来源:《太阳能学报》 网址: http://www.tynxbzz.cn/zonghexinwen/2021/0508/1019.html



上一篇:普利司通携手Lightyear打造首款长续航太阳能电动
下一篇:打造太阳能电池阵列,福特使用2159片电池组为其

太阳能学报投稿 | 太阳能学报编辑部| 太阳能学报版面费 | 太阳能学报论文发表 | 太阳能学报最新目录
Copyright © 2018 《太阳能学报》杂志社 版权所有
投稿电话: 投稿邮箱: